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The dissipation approximation and viscous
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By D. D. JOSEPH AND J. WANG
Department of Aerospace Engineering and Mechanics, University of Minnesota,

Minneapolis, MN 55455, USA

(Received 18 June 2003 and in revised form 1 February 2004)

Dissipation approximations have been used to calculate the drag on bubbles and
drops and the decay rate of free gravity waves on water. In these approximations,
viscous effects are calculated by evaluating the viscous stresses on irrotational flows.
The pressure is not involved in the dissipation integral, but it enters into the power of
traction integral, which equals the dissipation. A viscous correction of the irrotational
pressure is needed to resolve the discrepancy between the zero-shear-stress boundary
condition at a free surface and the non-zero irrotational shear stress. Here we show
that the power of the pressure correction is equal to the power of the irrotational
shear stress. The viscous pressure correction on the interface can be expressed by a
harmonic series. The principal mode of this series is matched to the velocity potential
and its coefficient is explicitly determined. The other modes do not enter into the
expression for the drag on bubbles and drops. They vanish in the case of free gravity
waves.

1. Introduction
The drag on a spherical gas bubble of radius a rising in a viscous liquid at

high Reynolds number has been calculated by various investigators beginning with
Levich (1949), who obtained the value 12πaµU or equivallently the drag coefficient
48/R, where R = 2aUρ/µ is the Reynolds number, by calculating the dissipation of
the irrotational flow around the bubble. Moore (1959) calculated the drag directly by
integrating the pressure and viscous normal stress of the potential flow and neglecting
the viscous shear stress (which physically should be zero), obtaining the value 8πaµU .
The discrepancy between these two values led G.K. Batchelor, as reported in Moore
(1963), to suggest the idea of a pressure correction to the irrotational pressure. In
that paper, Moore performed a boundary layer analysis and his pressure correction
is readily obtained by setting y = 0 in his equation (2.37):

pv = (4/R)(1 − cos θ)2(2 + cos θ)/sin2θ, (1.1)

which is singular at the separation point where θ = π. The presence of separation
is a problem for the application of boundary layers to the calculation of drag on
solid bodies. To find the drag coefficient Moore calculated the momentum defect, and
obtained the Levich value 48/R plus contributions of order R−3/2 or lower. None
of these drag formulae are in convincing agreement with experiments (see Batchelor
1967, figure 5.14.1 and Joseph 2003, figure 3), because the deviation of the bubble
from sphericity occurs at much lower Reynolds number than would be required
for the validity of any boundary layer theory. Obviously it would be of interest to
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calculate the drag directly by solving the boundary layer equations and hence obtain
the drag from the corrected pressure. However, this has so far not been accomplished.

Kang & Leal (1988) put the shear stress of the potential flow on the bubble surface
to zero and calculate a pressure correction. They obtain the drag coefficient given
by Levich’s dissipation approximation by direct integration of the normal viscous
stress and pressure over the bubble surface. They accomplished this by expanding the
pressure correction as a spherical harmonic series and noting that only one term of
this series contributes to the drag, no appeal to the boundary-layer approximation
being necessary.

A different application of the dissipation approximation was presented by Lamb
(1932). He computed the effect of viscosity on the decay of small-amplitude progressive
free waves on water. This problem falls into the general framework presented here;
we compute a viscous correction to the irrotational pressure which can be used to
correct the direct calculation of decay using viscous potential flow. Fortunately, Lamb
also obtained an exact solution from which the approximations can be evaluated and
the nature of the boundary layer can be rigorously examined.

2. Pressure correction formulae
The mechanical energy equation for the Navier–Stokes equations is

d

dt

∫
V

ρu2

2
dV =

∫
A

u · (T · n) dA −
∫

V

2µD :D dV (2.1)

where

T = −p1 + 2µD[u] (2.2)

is the stress, D[u] is the rate of strain tensor, V is the volume occupied by the fluid,
A is the boundary of V , and n is the outward normal of V on A. When the kinetic
energy flux across the boundary is zero and the flow is steady, (2.1) becomes

P ≡
∫

A

u · (T · n) dA =

∫
V

2µD : D dV ≡ D (2.3)

where D is the dissipation and P is the power of traction.
We consider irrotational solutions of the Navier–Stokes equations with u = ∇φ and

stresses given by (2.2) where p = pi is the pressure function which is generated by
the irrotational flow of an inviscid fluid. We call this solution viscous potential flow
(VPF):

u = ∇φ, ∇2φ = 0, T = −pi1 + 2µ∇ ⊗ ∇φ (2.4)

in the bulk liquid. The contribution of pi to the drag on bodies in steady irrotational
flow of an inviscid fluid vanishes (D’Alembert paradox). In general, the normal stress

τn = n · 2µ∇ ⊗ ∇φ · n �= 0 (2.5)

and the shear stress

τs = t · 2µ∇ ⊗ ∇φ · n �= 0 (2.6)

do not vanish at the gas–liquid interface. Here t is the unit tangential vector.
We next consider a viscous correction of the above solution. The problem solved

by this correction expresses the idea, frequently encountered in the literature, that a
viscous correction of the pressure at the gas–liquid interface is required to compensate
for the irrotational shear stress; instead of τs �= 0, we have τs = 0. We call this problem
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the viscous correction of VPF (VCVPF):

u = ∇φ, ∇2φ = 0, T = −p1 + 2µ∇ ⊗ ∇φ (2.7)

in the bulk liquid; at the gas–liquid interface

τn = n · 2µ∇ ⊗ ∇φ · n �= 0, (2.8)

τs = 0, (2.9)

p = pi + pv, (2.10)

where pv is a viscous pressure correction to the irrotational pressure pi.
Of course, the viscous dissipation computed for VPF and VCVPF are identical

because only the strain rate in the bulk liquid enters into the dissipation integral and
the strain rate is computed on the same velocity potential in the two problems.

We compute the power of the traction integral of the VPF which is equal to the
dissipation according to (2.3):

D = P =

∫
A

u · (T · n) dA =

∫
A

[u · n(−pi + τn) + u · tτs] dA. (2.11)

The power of the traction integral of VCVPF can be computed using (2.8)–(2.10); we
assume that the integral is equal to the dissipation (up to the leading order 1/R):

D = P =

∫
A

u · (T · n) dA =

∫
A

u · n(−pi − pv + τn) dA. (2.12)

Since D, u, pi and τn are the same in (2.11) and (2.12), we find that∫
A

u · n(−pv) dA =

∫
A

u · tτs dA = Ps, (2.13)

where Ps denotes the power of the irrotational shear stress. Equation (2.13) is the
main result relating the irrotational shear stress to the pressure correction.

We consider separable solutions of ∇2φ =0. For simplicity, we consider axisym-
metric or planar problems and use the orthogonal coordinate system (α, β); the gas–
liquid interface is given by α =const. The solution of the potential flow equations
may be written as

φ = hk(α)fk(β), (2.14)

where fk(β) is the kth mode of the surface harmonics. A pressure correction function
which is periodic or finite at the gas–liquid interface may be expanded as a series of
surface harmonics of integral orders:

−pv = Ckfk(β) +
∑
j �=k

Cjfj (β), (2.15)

where fj (β) are surface harmonics and the Cj are constant coefficients.
Substitution of (2.15) into (2.13) leads to

Ck

∫
A

u · nfk(β) dA +
∑
j �=k

Cj

∫
A

u · nfj (β) dA = Ps. (2.16)

We assume that the normal velocity is orthogonal to fj (β), j �= k:∫
A

u · nfj (β) dA = 0 when j �= k, (2.17)
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which is a verifiable condition and is confirmed in each example we consider here.
Now (2.16) gives the coefficient Ck

Ck =
Ps∫

A

u · nfk(β) dA

. (2.18)

Using (2.18) for VCVPF we may write

−p = −pi +
Psfk(β)∫

A

u · nfk(β) dA

+
∑
j �=k

Cjfj (β). (2.19)

The term Psfk(β)/
∫

A
u · nfk(β) dA may be called the principal part of the viscous

pressure correction; it is proportional to the power integral of the uncompensated
irrotational shear stress. It is the only term in the pressure correction to enter into the
power of traction integral, into the direct calculation of the drag on rising bubbles or
drops, and into the expression for the decay rate of free gravity waves. The principal
part of the pressure correction is explicitly computable as we shall see in the examples
to follow. For the free wave problem we shall show that Cj = 0 when j �= k (see § 6.4).
In general, the values of Cj, j �= k are not known, but for the special case of a rising
spherical gas bubble, Kang & Leal (1988) presented computable expressions for these
coefficients.

The expression (2.19) completes the formulation of equations (2.7)–(2.10) for
VCVPF up to the principal part of the harmonic series.

We may compare the dissipation calculation and direct calculation of the drag
using VPF defined by (2.4)–(2.6) and VCVPF defined by (2.7)–(2.10) and (2.19). Let
D1 be the drag calculated by the dissipation method

D1 = D/U, (2.20)

and D2 be the drag from direct calculation

D2 =

∫
A

ex · T · n dA =

∫
A

[ex · n(−p + τn) + ex · tτs] dA, (2.21)

where x is the direction of translation. The direct calculation using VPF leads to
D2 = 0 even though the dissipation is not zero, which is a known result (see, for
example, Zierep 1984; Joseph & Liao 1994). The dissipation approach involves a
volume integral and the direct calculation involves a surface integral. The solution to
the Navier–Stokes equations in these nearly irrotational flows involves a leading-order
term (the irrotational solution) and a viscous correction at the boundary. When using
the dissipation approach, the leading-order calculation only involves the irrotational
result. However, the viscous correction has to be considered to obtain the leading-
order result when using the direct calculation. We shall focus on the direct calculation
using VCVPF in the following examples (§ § 3–5) and show that D2 computed using
VCVPF here is equal to D1 obtained by the dissipation method in the literature.

3. Rising spherical gas bubble
Consider now a spherical gas bubble rising with a constant velocity U ex in a viscous

fluid, for which

φ = −1

2
Ua3 cos θ

r2
. (3.1)
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At the surface of the bubble, where r = a, we have

ur = Ucos θ, uθ = Usin θ/2;

τrr = −6µUcos θ/a, τrθ = −3µUsin θ/a;

pi = p∞ + 1
2
ρU 2

(
1 − 9

4
sin2θ

)
.


 (3.2)

The dissipation is given by D = 12πµaU 2 and Ps = 4πµaU 2.
The pressure correction may be expanded as a spherical surface harmonic series∑∞
j=0 CjPj (cos θ). Substitution of ur and pv into (2.13) gives

−
∫ 1

−1

UP1(cos θ)

[
C1P1(cos θ) +

∑
j �=1

CjPj (cos θ)

]
2πa2 d(cos θ) = Ps. (3.3)

The coefficient C1 is then determined and the pressure correction is

−pv = −3µUP1(cos θ)/a +
∑
j �=1

CjPj (cos θ), (3.4)

which is the same as the pressure correction of Kang & Leal (1988) who obtained
it by means of a general relationship between the viscous pressure correction and
the vorticity distribution for a spherical bubble in an arbitrary axisymmetric flow.
Kang & Leal demonstrated that the drag from direct calculation using the pressure
correction (3.4) is 12πµaU , the same as the drag by dissipation calculation.

4. Rising oblate ellipsoidal bubble (Moore 1965)
The equation of the ellipsoid is

x2 + y2

b2
+

z2

a2
= 1

where b � a. Orthogonal ellipsoidal coordinates (α, β, ω) are related to (x, y, z) by

x = κ[(1 + α2)(1 − β2)]1/2cosω,

y = κ[(1 + α2)(1 − β2)]1/2sin ω,

z = καβ.

The ellipsoid is given by α = α0 provided that

κ
(
1 + α2

0

)1/2
= b, κα0 = a.

The potential for an oblate ellipsoid rising with a constant velocity U ez is

φ = −Uκqβ(1 − αcot−1α), (4.1)

where q(α0) = (cot−1α0 − α0/(1 + α2
0))

−1. The velocity components in the ellipsoidal
coordinates are (uα, uβ, 0), and at the surface of the ellipsoid, we have

uα = Uβ

√
1 + α2

0

α2
0 + β2

, uβ = −Uq

√
1 − β2

α2
0 + β2

(1 − α0cot−1α0). (4.2)

The normal stress ταα and shear stress τβα are calculated using the potential flow, and
their values at the surface of the ellipsoid are

ταα = −2µ
Uβq

(
1 + 2α2

0 + β2
)

(
α2

0 + β2
)2

κ
(
1 + α2

0

) , τβα = 2µ
Uqα0

κ
(
α2

0 + β2
)2

√
1 − β2

1 + α2
0

. (4.3)
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Then the power of the shear stress can be evaluated:

Ps = −
∫

A

uβτβα dA = 4µπU 2κq2(1 − α0cot−1α0)
[
α0 +

(
1 − α2

0

)
cot−1α0

]
/α2

0 . (4.4)

Now we calculate the pressure correction pv. Noting that ellipsoidal harmonics Pj (β)
(see Lamb 1932) are appropriate in this case and the potential (4.1) is proportional
to P1(β) = β , we write the pressure correction as

−pv = C1P1(β) +
∑
j �=1

CjPj (β). (4.5)

Inserting (4.5) into (2.13) and using dA = 2πκ2(1 + α2
0)

1/2(α2
0 + β2)1/2 dβ , we obtain

−
∫

A

uα(−pv) dA = −2πκ2U
(
1 + α2

0

) ∫ 1

−1

P1(β)

[
C1P1(β) +

∑
j �=1

CjPj (β)

]
dβ = Ps.

(4.6)

The terms Pj (j �= 1) do not contribute the integral; the coefficient C1 is determined.
Then the pressure correction is

−pv =
−3µUq2

κ
(
1 + α2

0

)
α2

0

(1 − α0cot−1 α0)
[
α0 +

(
1 − α2

0

)
cot−1 α0

]
P1(β) +

∑
j �=1

CjPj (β). (4.7)

At the limit α0 → ∞ where the ellipsoid becomes a sphere, the pressure correction
(4.7) reduces to

lim
α0→∞

− pv = −3µUcos θ/a +
∑
j �=1

CjPj (cos θ) (4.8)

with β = cos θ at this limit being understood. This is in agreement with the pressure
correction (3.4) for the spherical gas bubble.

We calculate the drag by direct integration:

D2 =

∫
A

ez · eα(−pv + ταα) dA =
4µπUκq2

1 + α2
0

(
1

α0

+
1 − α2

0

α2
0

cot−1α0

)
, (4.9)

which is in agreement with the dissipation calculation of Moore (1965).

5. A liquid drop rising in another liquid (Harper & Moore 1968)
The steady flow of a spherical liquid drop in another immiscible liquid can be

approximated by Hill’s spherical vortex inside, and potential flow outside. We use the
superscript o for quantities outside the drop and i for quantities inside. The stream
and potential functions of the outer flow are

ψo = 1
2
Usin2 θ

a3

r
and φ = − 1

2
Ua3 cos θ

r2
, (5.1)

respectively. The stream function for a Hill’s vortex moving at a constant velocity
relative to fixed coordinate system is

ψi =
3Ur2

4
sin2 θ

(
1 − r2

a2

)
+ 1

2
Ur2sin2 θ =

Ur2

4
sin2 θ

(
5 − 3r2

a2

)
. (5.2)
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At the surface of the drop, where r = a, we have

ur = uo
r = ui

r = Ucos θ, uθ = uo
θ = ui

θ = Usin θ/2, (5.3)

τ o
rr = −6µoUcos θ/a, τ o

rθ = −3µoUsin θ/a, (5.4)

τ i
rr = −6µiUcos θ/a, τ i

rθ = 9µiUsin θ/(2a). (5.5)

This Hill’s vortex problem fits in with the general framework discussed in § 2 in
the sense that there is a shear stress discontinuity at the interface which needs to
be resolved by adding a pressure correction to the irrotational pressure. However,
it is somewhat different from gas–liquid interface problems because the shear stress
inside the drop is not zero but is determined by the Hill’s vortex. Again we seek
the expression for the pressure correction by comparing the VPF solution and the
VCVPF solution. We proceed by calculating the total dissipation of the system, which
is equal to the sum of the power of traction on the outer and inner liquids Po + Pi .
There is only one way to calculate Pi , but Po may be evaluated on VPF or VCVPF.
For VPF, τ o

rr and τ o
rθ given by (5.4) are used to calculate Po and

D = Po + Pi = −
∫

A

[
ur

(
−pi + τ o

rr

)
+ uθτ

o
rθ

]
dA + Pi . (5.6)

For VCVPF, a pressure correction is added to resolve the discontinuity between
τ o
rθ and τ i

rθ . Then the value of the shear stress at the interface is τ i
rθ , not τ o

rθ . The
dissipation for VCVPF is

D = Po + Pi = −
∫

A

[
ur

(
−pi − pv + τ o

rr

)
+ uθτ

i
rθ

]
dA + Pi . (5.7)

Since D, Pi , pi, τ o
rr and u are the same in both cases, we find that∫

A

ur (−pv) dA =

∫
A

uθ

(
τ o
rθ − τ i

rθ

)
dA. (5.8)

Now we expand the pressure correction as a spherical surface harmonic series and
(5.8) becomes∫ 1

−1

Ucos θ

[
C1cos θ +

∑
j �=1

CjPj (cos θ)

]
2πa2 d(cos θ) = −4πaU 2(µo + 3µi/2). (5.9)

The coefficient C1 is then obtained and the pressure correction is

−pv =
−3U

a

(
µo +

3µi

2

)
cos θ +

∑
j �=1

CjPj (cos θ). (5.10)

If the inside liquid is gas, µi = 0 and the first term of (5.10) becomes −3µoUcos θ/a,
which agrees with the first term of the pressure correction (3.4) for a gas bubble. The
pressure correction (5.10) can also be tested by direct calculation of the drag D2 on
the drop:

D2 =

∫
A

ex · T · (−er) dA = −
∫

A

[
cos θ

(
−pv + τ o

rr

)
− sin θτ i

rθ

]
dA = 12πaU

(
µo +

3µi

2

)
(5.11)

which is the same as the result from the dissipation approximation by Harper &
Moore (1968).
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6. Decay of free gravity waves on water
It is possible to have a progressive gravity wave of permanent form if the viscosity

of the liquid below air is identically zero. Lamb (1932, § § 348, 349) performed an
analysis of the effect of viscosity on these waves. The wave decays and the decay rate
may be obtained in two ways: by a dissipation calculation or by a direct (stability)
calculation using viscous potential flow. This is analogous to the dissipation and
direct calculation of drag. The two decay rates are not the same.

Lamb also constructed an exact solution to this problem: it gives a decay rate
different from the two just mentioned; it reduces to the one computed by the
dissipation method for long waves (k � (g/ν2)1/3, where k is the wavenumber) and
to the one computed directly for short waves (k 	 (g/ν2)1/3). The dissipation method
gives the wrong result for short waves and the direct method using VPF gives the
wrong result for long waves.

Lamb’s exact solution also reveals the vorticity near the wave surface, which
provides explanations for the aforementioned discrepancies. At the long wave limit,
the vorticity is important in a thin boundary layer; thus a pressure correction is
needed. We calculate a pressure correction by the method given in § 2; then the direct
calculation using the VCVPF solution leads to the same decay rate as Lamb’s exact
solution at the long wave limit.

6.1. Dissipation calculation (Lamb 1932, § 348)

When gravity is important and g = −eyg where y points upward, the energy equa-
tion (2.1) becomes

d

dt

∫
V

ρ
(

1
2
u2 + gy

)
dV = P − D (6.1)

where P is the power of traction and D is the dissipation. In the present problem we
look at functions periodic in x with period λ and y = η(x, t) is the free surface and
−L � y � η, L → ∞. The gravity term gives rise to a potential energy∫

V

ρgy dV =

∫ λ

0

ρgη2

2
dx. (6.2)

Lamb notes that when the viscosity is neglected, the progressive wave may be
represented by

φ = αcekycos k(x − ct), η = αsin k(x − ct) (6.3)

where c =
√

g/k for inviscid potential flow is the wave velocity. In fact, this relation
between φ and η holds only when α is independent of time. He notes that (6.3) will
hold and the motion will persist, even with viscosity, provided that the surface stresses
calculated on the potential flow are applied. In this case the dissipation in one period
is

D = P = 2µk3α2c2λ. (6.4)

In the free wave, with P = 0,

d

dt

(∫
V

ρ
u2

2
dV +

∫ λ

0

ρgη2

2
dx

)
=

d

dt

(
1
2
ρkα2c2λ

)
= −D = 2µk3α2c2λ. (6.5)

Equation (6.5) implies that

dα

dt
= −2νk2α. (6.6)

Thus −2νk2 is the decay rate from the dissipation calculation.
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6.2. Direct calculation using VPF (Funada & Joseph 2001)

The decay of free gravity waves can be treated as a stability problem using the theory
of VPF. The stability analysis is a special case of the study of Kevin–Helmholtz
stability given by Funada & Joseph (2001). The governing equations are

y � 0 : u = ∇φ, ∇2φ = 0, (6.7)

y = 0 :




ρ
∂φ

∂t
= −pi − ρgη Bernoulli equation,

−pi + 2µ
∂2φ

∂y2
= 0 normal stress balance,

∂φ

∂y
=

∂η

∂t
kinematic condition.

(6.8)

After eliminating pi and η from (6.8) and applying the potential

φ = Aeky+nt+ikx, (6.9)

we find

n = −νk2 ± ik
√

g/k − ν2k2. (6.10)

Hence the amplitude of the wave decays at a rate

dα

dt
= −νk2α, (6.11)

one half of the rate given by (6.6). The wave speed is given by

c =
√

g/k − ν2k2, (6.12)

which is slower than the inviscid wave speed
√

g/k for νk2 <
√

gk. For very large
values of k, νk2 	

√
gk and short standing waves do not propagate but simply decay

at a rate given by

dα

dt
= − g

2νk
α. (6.13)

6.3. Exact solution (Lamb 1932, § 349)

Lamb gave an exact solution of the problem of decaying free gravity waves. It differs
from the solutions using viscous potential flow just given, in that the conditions

Txy = 0, Tyy = γ
∂2η

∂x2
(6.14)

at the free surface (at y = 0) are strictly enforced. (The surface tension γ is not
relevant in our discussion here and could be put to zero.)

The condition (6.14) cannot be satisfied by an irrotational flow. To accommodate
vorticity, Lamb introduces a stream function ψ and the solution is given by

u =
∂φ

∂x
+

∂ψ

∂y
, v =

∂φ

∂y
− ∂ψ

∂x
,

p

ρ
= −∂φ

∂t
− gy, (6.15)

provided

∇2φ = 0, ∂ψ/∂t = ν∇2ψ. (6.16)

No pressure term enters into the stream function equation; the pressure p depends on
the viscosity through the velocity potential. Lamb shows that the governing equations
can be solved with normal nodes

φ = −Aekyeikx+nt , ψ = −Cemyeikx+nt , m2 = k2 + n/ν (6.17)
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provided

(n + 2νk2)2 + gk + γ ′k3 = 4ν2k3m (6.18)

where γ ′ = γ /ρ. When νk2 �
√

gk + γ ′k3 (long waves) Lamb finds that

n = −2νk2 ± i
√

gk + γ ′k3. (6.19)

The decay rate −2νk2 agrees with the dissipation approximation result (6.6). When

νk2 	
√

gk + γ ′k3 (short waves) and with γ ′ ignored,

n = − g

2νk
, (6.20)

which agrees with the decay rate (6.13) from the direct stability analysis using VPF.
This limit is for very viscous fluid and negligible vorticity. Lamb says that this limit
“. . . represents a slow creeping of the fluid towards a state of equilibrium with a
horizontal surface.”

The decay rate −νk2 given by (6.11) is one-half of the exact solution at the long
wave limit. This discrepancy is caused by the boundary layer at the free surface,
which is not accounted for in the direct stability analysis using VPF. The vorticity ω

is given by

ω =
n

ν
Cemy+ikx+nt . (6.21)

At the long wave limit, the vorticity is important in a thin boundary layer. Lamb
gives an estimate of the thickness of the boundary layer, 2π/χ , where χ =
(
√

gk + γ ′k3/2ν)1/2. The situation is different at the short wave limit, where the
magnitude of the vorticity is very small and there is no sensible boundary layer. This
explains why the decay rate arising from the direct calculation using VPF agrees with
the exact solution at the short wave limit.

6.4. Direct calculation using VCVPF

At the long wave limit, a pressure correction to the irrotational pressure due to the
vorticity layer is needed. We can solve for the viscous pressure correction from the lin-
earized governing equation and prove that it is a harmonic series in this case. First we
divide the velocity and pressure in the boundary layer near the interface into two parts

u = up + uv, p = pp + pv, (6.22)

where the subscript p denotes potential solutions and v denotes viscous corrections.
The linearized governing equation for (uv, pv) is

∂uv

∂t
= − 1

ρ
∇pv + ν∇2uv. (6.23)

We take the divergence of (6.23) and obtain ∇2pv = 0. The solution of pv can be
expressed as a Fourier series

−pv =

∞∑
j=−∞

Cje
nt+jy+ijx . (6.24)

The zero shear stress condition at the free surface implies that ∂uvx/∂y ∼ O(1) and
it follows from the continuity equation that ∂uvy/∂y ∼ O(δ) where δ is the boundary
layer thickness. The normal stress balance at y = 0 is

−p + 2µ
∂2φ

∂y2
= 0, (6.25)
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where the surface tension and the term 2µ∂uvy/∂y are ignored. Equation (6.25) can
be written as

ρ
∂φ

∂t
+ ρgη − pv + 2µ

∂2φ

∂y2
= 0. (6.26)

Substituting the expressions for φ (6.9) and pv (6.24) into (6.26), we have(
ρnA + ρ

gk

n
A + 2µk2A + Ck

)
ent+ikx +

∑
j �=k

Cje
nt+ijx = 0. (6.27)

By orthogonality, we obtain

ρnA + ρ
gk

n
A + 2µk2A + Ck = 0 and Cj = 0 if j �= k. (6.28)

The constant Ck can be determined using (2.18). We list the velocities and stresses at
y = 0 evaluated on the potential:

upx = ikAent+ikx, upy = kAent+ikx;

τyy = 2µk2Aent+ikx, τxy = i2µk2Aent+ikx.

}
(6.29)

The power of the pressure correction and power of the shear stress are∫ λ

0

u∗
py(−pv) dx = CkAkλ, Ps =

∫ λ

0

u∗
px(τxy) dx = 2µA2k3λ, (6.30)

where the asterisk denotes conjugate variables. It follows that

Ck = 2µk2A and −pv = 2µk2Aent+ky+ikx. (6.31)

Inserting the value of Ck into (6.28), we have

ρn + ρ
gk

n
+ 2µk2 + 2µk2 = 0 (6.32)

and the solution for the potential is

φ = Aekye−2νk2teik(x±t
√

g/k−4ν2k2). (6.33)

The amplitude of the wave decays at a rate −2νk2 which agrees with the dissipation
result and Lamb’s exact solution at the long wave limit.

This analysis of the pressure correction of progressive waves can be easily
modified to obtain the pressure correction of standing waves. If we use the potential
φ = ((da/dt)eky/k) cos kx for standing waves, we can obtain

−pv = 2µk(da/dt)ekycos kx,

which is exactly the same as the pressure correction obtained by Prosperetti (1976)
using a different method.

7. Conclusion
This paper concerns viscous potential flow for problems with a free surface. When

treating potential flow it is neither necessary nor useful to put the viscosity to zero.
The theory of viscous potential flow can give an accurate description of the fluid
dynamics when the vorticity is essentially zero or is confined to a narrow layer near
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the boundary. There are many situations in which the viscosity is very large and the
vorticity is small and not important. Some problems of this type have been analysed
by the dissipation method which has been used to describe motions of bubbles and
drops and the effects of viscosity on the decay of irrotational waves. The dissipation
method involves the computation of viscous stresses using the irrotational strain
rate; vorticity and vorticity layers do not enter these computations of drag or decay.
Another way to approach these problems is by direct application of viscous potential
flow. This method works well only when vorticity layers are unimportant. When
there are vorticity layers, the direct method can be corrected by adding a pressure
correction pv to the irrotational pressure pi; the viscous normal stress is computed for
the irrotational motion and only the pressure is corrected for vorticity. The pressure
correction is presumed to arise from a boundary layer of vorticity induced by the
unbalanced irrotational shear stress. Boundary layer analyses have appeared in the
literature, but have not achieved a pressure correction formula which would lead to
the same drag on a gas bubble rising in a viscous liquid at high Reynolds number as
the drag calculated by the dissipation method.

Here, we have derived an explicit relation between the pressure correction and
the irrotational shear stress at the interface. A periodic or finite pressure correction
may be expanded as a harmonic series. We may explicitly compute the coefficient
of the principal mode in the series which is matched to the velocity potential. The
other modes do not enter into the expression for the drag on bubbles and drops.
They vanish in the case of free gravity waves. Our pressure correction formula is
applied to cases for which dissipation results are computed in the literature; when
the irrotational pressure is corrected, our direct computation gives the same result as
the dissipation computation. Our pressure corrections are confirmed by independent
results in the case of a rising spherical gas bubble (Kang & Leal 1988) and in the
case of the decay of standing free waves (Prosperetti 1976). We also computed the
pressure corrections for a rising oblate ellipsoidal gas bubble and a rising spherical
liquid drop, for which no independent results are available for comparison. They
reduce to the pressure correction for a rising spherical gas bubble at the limit, which
provides indirect corroboration for these pressure corrections.

The pressure correction formula shows that these corrections are not important in
problems in which the irrotational shear stress is small or zero. In these cases, listed
below, the direct application of viscous potential flow leads to outstanding results.
There are other cases, discussed in this paper, in which the pressure correction is
needed.

(i) The Rayleigh–Plesset bubble. This is an exact viscous potential flow solution of
the Navier–Stokes equations. This bubble describes purely radial motions in which
the irrotational shear stress is identically zero.

(ii) The rise velocity of a spherical cap bubble. Large gas bubbles do not stay
spherical; instead they take the lenticular shape of a spherical cap bubble. The
vorticity layers do not appear to strongly affect spherical cap bubbles. Davies &
Taylor (1950) showed that the rise velocity of such a bubble could be obtained from
a local analysis without using a drag balance, noting that the nose of the bubble is
spherical as a result of the pressure generated by motion, without surface tension.
Joseph (2003) generalized their inviscid potential flow result to include effects of
viscosity, surface tension and the deviation of the bubble nose from sphericity using
viscous potential flow and he obtained a hyperbolic drag law

CD = 6 + 32/R. (7.1)
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The Davies–Taylor result CD = 6, and the formula (7.1) of viscous potential flow, are
in excellent agreement with the experimental results of Bhaga & Webber (1981) for
small and large R. The 32/R term is correct because the irrotational shear stress
vanishes at the stagnation point and is small near the stagnation point at the nose of
the rising bubble.

(iii) Stability limits and maximum growth rates for Rayleigh–Taylor instability of
viscous fluids (Joseph, Belanger & Beavers 1999) and viscoelastic fluids (Joseph, Beavers
& Funada 2002). These results depend very strongly on the viscosity and viscoelastic
parameters. For this problem there is at most a few percent difference between the
results of viscous and viscoelastic potential flow and the exact solution. The reason
for the excellent results of the potential flow analysis is that the irrotational shear
stress of the basic flow vanishes identically.

The exact solution of Lamb (1932, § 349) tends to the irrotational solution at the
short wave limit in the gravity waves problem; the zero traction condition at the
surface is satisfied by a non-propagating wave which tends monotonically to y = 0.
This is another case in which the irrotational solution is exact.

Viscous potential flow will not work when vorticity is important; when it is not
important, potential flow can be used but the viscosity should not be put to zero.
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